3.5.8 \(\int \frac {(d+e x)^{3/2}}{\sqrt {b x+c x^2}} \, dx\) [408]

Optimal. Leaf size=241 \[ \frac {2 e \sqrt {d+e x} \sqrt {b x+c x^2}}{3 c}+\frac {4 \sqrt {-b} (2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{3 c^{3/2} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 \sqrt {-b} d (c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{3 c^{3/2} \sqrt {d+e x} \sqrt {b x+c x^2}} \]

[Out]

4/3*(-b*e+2*c*d)*EllipticE(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(e*x
+d)^(1/2)/c^(3/2)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)-2/3*d*(-b*e+c*d)*EllipticF(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e
/c/d)^(1/2))*(-b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(1+e*x/d)^(1/2)/c^(3/2)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2)+2/3*e*
(e*x+d)^(1/2)*(c*x^2+b*x)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {756, 857, 729, 113, 111, 118, 117} \begin {gather*} -\frac {2 \sqrt {-b} d \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (c d-b e) F\left (\text {ArcSin}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{3 c^{3/2} \sqrt {b x+c x^2} \sqrt {d+e x}}+\frac {4 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} (2 c d-b e) E\left (\text {ArcSin}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{3 c^{3/2} \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}+\frac {2 e \sqrt {b x+c x^2} \sqrt {d+e x}}{3 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/Sqrt[b*x + c*x^2],x]

[Out]

(2*e*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])/(3*c) + (4*Sqrt[-b]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x
]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(3*c^(3/2)*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2])
- (2*Sqrt[-b]*d*(c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqr
t[-b]], (b*e)/(c*d)])/(3*c^(3/2)*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2*(Sqrt[e]/b)*Rt[-b/
d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[
d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-b/d, 0]

Rule 113

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x]*(Sqrt[
1 + d*(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)])), Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2/(b*Sqrt[e]))*Rt
[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] &&
GtQ[c, 0] && GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])

Rule 118

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[1 + d*(x/c)]*
(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x])), Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 729

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b
*x + c*x^2]), Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 756

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
 && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2}}{\sqrt {b x+c x^2}} \, dx &=\frac {2 e \sqrt {d+e x} \sqrt {b x+c x^2}}{3 c}+\frac {2 \int \frac {\frac {1}{2} d (3 c d-b e)+e (2 c d-b e) x}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{3 c}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {b x+c x^2}}{3 c}-\frac {(d (c d-b e)) \int \frac {1}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{3 c}+\frac {(2 (2 c d-b e)) \int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx}{3 c}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {b x+c x^2}}{3 c}-\frac {\left (d (c d-b e) \sqrt {x} \sqrt {b+c x}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}} \, dx}{3 c \sqrt {b x+c x^2}}+\frac {\left (2 (2 c d-b e) \sqrt {x} \sqrt {b+c x}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}} \, dx}{3 c \sqrt {b x+c x^2}}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {b x+c x^2}}{3 c}+\frac {\left (2 (2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x}\right ) \int \frac {\sqrt {1+\frac {e x}{d}}}{\sqrt {x} \sqrt {1+\frac {c x}{b}}} \, dx}{3 c \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {\left (d (c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}} \, dx}{3 c \sqrt {d+e x} \sqrt {b x+c x^2}}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {b x+c x^2}}{3 c}+\frac {4 \sqrt {-b} (2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{3 c^{3/2} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 \sqrt {-b} d (c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{3 c^{3/2} \sqrt {d+e x} \sqrt {b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 9.64, size = 246, normalized size = 1.02 \begin {gather*} \frac {-2 b (b+c x) (d+e x) (2 b e-c (4 d+e x))-4 i b \sqrt {\frac {b}{c}} c e (-2 c d+b e) \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} E\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )+2 i \sqrt {\frac {b}{c}} c \left (3 c^2 d^2-5 b c d e+2 b^2 e^2\right ) \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} F\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )}{3 b c^2 \sqrt {x (b+c x)} \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/Sqrt[b*x + c*x^2],x]

[Out]

(-2*b*(b + c*x)*(d + e*x)*(2*b*e - c*(4*d + e*x)) - (4*I)*b*Sqrt[b/c]*c*e*(-2*c*d + b*e)*Sqrt[1 + b/(c*x)]*Sqr
t[1 + d/(e*x)]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] + (2*I)*Sqrt[b/c]*c*(3*c^2*d^2 - 5
*b*c*d*e + 2*b^2*e^2)*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d
)/(b*e)])/(3*b*c^2*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(459\) vs. \(2(193)=386\).
time = 0.45, size = 460, normalized size = 1.91

method result size
elliptic \(\frac {\sqrt {x \left (e x +d \right ) \left (c x +b \right )}\, \left (\frac {2 e \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}{3 c}+\frac {2 \left (d^{2}-\frac {e b d}{3 c}\right ) b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \EllipticF \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}+\frac {2 \left (2 d e -\frac {2 e \left (b e +c d \right )}{3 c}\right ) b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \left (\left (-\frac {b}{c}+\frac {d}{e}\right ) \EllipticE \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )-\frac {d \EllipticF \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{e}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}\right )}{\sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}\) \(381\)
default \(\frac {2 \sqrt {e x +d}\, \sqrt {x \left (c x +b \right )}\, \left (b^{2} d \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) e c -\sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b \,c^{2} d^{2}+2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{3} e^{2}-6 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{2} c d e +4 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b \,c^{2} d^{2}+c^{3} e^{2} x^{3}+b \,c^{2} e^{2} x^{2}+c^{3} d e \,x^{2}+b \,c^{2} d e x \right )}{3 x \left (c e \,x^{2}+b e x +c d x +b d \right ) c^{3}}\) \(460\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(e*x+d)^(1/2)*(x*(c*x+b))^(1/2)*(b^2*d*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*Ellip
ticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*e*c-((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2
)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^2*d^2+2*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2
)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^3*e^2-6*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b
*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*c*d*e+4*((c*x+b)/b)^(1/2)
*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c^2*d^2+c^3*
e^2*x^3+b*c^2*e^2*x^2+c^3*d*e*x^2+b*c^2*d*e*x)/x/(c*e*x^2+b*e*x+c*d*x+b*d)/c^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((x*e + d)^(3/2)/sqrt(c*x^2 + b*x), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.64, size = 341, normalized size = 1.41 \begin {gather*} \frac {2 \, {\left (3 \, \sqrt {c x^{2} + b x} \sqrt {x e + d} c^{2} e^{2} + {\left (5 \, c^{2} d^{2} - 5 \, b c d e + 2 \, b^{2} e^{2}\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right ) - 6 \, {\left (2 \, c^{2} d e - b c e^{2}\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right )\right )} e^{\left (-1\right )}}{9 \, c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

2/9*(3*sqrt(c*x^2 + b*x)*sqrt(x*e + d)*c^2*e^2 + (5*c^2*d^2 - 5*b*c*d*e + 2*b^2*e^2)*sqrt(c)*e^(1/2)*weierstra
ssPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*
b^3*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c) - 6*(2*c^2*d*e - b*c*e^2)*sqrt(c)*e^(1/2)*weierstrass
Zeta(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^
3)*e^(-3)/c^3, weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^
2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c)))*e^(-1)/c^3

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\sqrt {x \left (b + c x\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral((d + e*x)**(3/2)/sqrt(x*(b + c*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate((x*e + d)^(3/2)/sqrt(c*x^2 + b*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^{3/2}}{\sqrt {c\,x^2+b\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(3/2)/(b*x + c*x^2)^(1/2),x)

[Out]

int((d + e*x)^(3/2)/(b*x + c*x^2)^(1/2), x)

________________________________________________________________________________________